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Abstract

The purpose of the paper is to demonstrate the feasibility of the direct coupling of the finite element method for the

structural part with a Wagner representation of the hydrodynamic loads during the impact of an elastic body onto the

water surface. An efficient and very general method is developed and validated in two dimensions. Advantages of the

present method are outlined for the elastic wedge impact problem; however, the method is applicable to any elastic body

with small deadrise angle entering water vertically at moderate velocity. Strategy for coupling of this method with

commercial finite element codes is discussed.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The unsteady two-dimensional problem of elastic structural impact onto a liquid free surface is considered. Elastic

deflection of the structure is described by the Euler beam equation, while the hydrodynamic loads are evaluated within

the so-called Wagner approximation (Wagner, 1932). In Wagner theory, the real shape of the elastic structure is

considered within the structural analysis but the hydrodynamic loads are evaluated approximately with the help of so

called ‘‘flat-disc approximation’’. Moreover, the boundary conditions are linearized and imposed on an initially

undisturbed liquid level.

Wagner theory is formally valid during the initial stage of interaction, when the penetration depth of the entering

body is much smaller than the horizontal dimension of the body. In the case of a wedge entering liquid this implies that

the deadrise angle of the wedge is small. The Wagner approach cannot be applied to the case of moderate and large

deadrise angles. However, for a body with larger deadrise angles one may expect that the hydrodynamic loads acting on

such a body during its entry are not large and hydroelastic interaction between the body and the liquid is less important

than in the case of the entry problem for elastic bodies with small deadrise angles. For a body with larger deadrise angle

(say, an elastic wedge with deadrise angle of 30 or 45�) more advanced theories than that developed by Wagner should

be used.

As a candidate, the so called generalized Wagner approach developed by Zhao et al. (1996) and Mei et al. (1999) can

be mentioned. In this approach the body boundary condition is imposed on the actual position of the entering body, but

the free surface boundary conditions are linearized (in the same way as in Wagner theory) and imposed on the splash-up
e front matter r 2006 Elsevier Ltd. All rights reserved.
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height (in contrast to the Wagner approach, where the linearized free-surface boundary conditions are imposed on the

undisturbed initial position of the free surface). The generalized Wagner approach is expected to provide more accurate

predictions of the hydrodynamic pressures than those from the classical Wagner approach. For rigid bodies a critical

review of more advanced approaches, which are based on Wagner theory, was given by Korobkin (2004).

However, we are unaware of any attempt to use the generalized Wagner approach in hydroelastic calculations. This

can be attributed to the fact that the generalized Wagner approach was designed for bodies with moderate deadrise

angles, where the classical Wagner theory fails. In ship hydrodynamics impact velocities are of the order of several

meters per second and hull platings are relatively thick. Here, local hydroelasticity is not usually a problem for ship

sections with moderate deadrise angles, but can be a severe problem for ship sections with small deadrise angles, where

the classical Wagner theory can be safely used. If the plate thickness is relatively small, as in the analysis by Lu et al.

(2000), or the entry velocity is very high, as in sea ballistics, then hydroelasticity is a problem even for bodies with

moderate deadrise angle. For these cases, more advanced hydrodynamic models should be used. Problems of sea

ballistics and entry problems for extremely flexible bodies are not considered in this paper.

It should be explained why the simplest theory of water impact developed by Wagner is still the main one used in

hydroelastic calculations. First, this theory was designed for bodies with small deadrise angles, which are of primary

concern from the point of view of hydroelasticity. Second, this theory was widely tested, so its strengths and weaknesses

are well known. On the other hand, more advanced theories, including fully nonlinear models of potential flows with

free boundaries, generally contain many technical and numerical ‘tricks’, which are incorporated, sometimes in an

implicit way, with the aim of improving stability and performance of a solver. This can mean that sometimes a solution

of more complex equations, which require sophisticated numerical schemes, is not necessarily more accurate than a

solution of simplified equations, for which numerical calculations are more transparent and, moreover, a part of them

can be performed analytically. Probably, the most complex analysis of the elastic wedge entry problem was performed

by Lu et al. (2000) for deadrise angles of 30� and 45�. However, the case of moderate deadrise angles is beyond the scope

of this paper. Moreover, Lu et al. expressed the view that validation of their method and ‘‘extensive comparison with

experimental data is needed before the method is used for practical applications’’. We can also add that comparison of

the so-called ‘‘more accurate models’’ with simplified ones would be helpful, to be sure that these models really provide

the high level accuracy claimed by their authors.

Despite its relative simplicity, the theory developed by Wagner and based on the ‘‘flat-disk’’ approximation, correctly

predicts the stresses in a horizontal elastic plate subject to wave impact [see Faltinsen et al. (1997)], and in a circular

elastic shell entering water at constant velocity (Ionina and Korobkin, 1999). In both cases the normal mode method

was used within the Wagner theory and the results were compared with the corresponding experimental ones. For

elastic circular shells the results obtained within the Wagner theory were also compared with the numerical results by

Arai and Miyauchi (1998) obtained from fully nonlinear potential theory with large deformations of the liquid free

surface. In terms of stresses, a fairly good agreement was obtained. A possible explanation of good performance of the

Wagner approach in hydroelastic problems of water impact was given by Faltinsen (1997), who wrote ‘‘The

experimental results suggest that the maximum impact pressures cannot be treated deterministically even in

deterministic environmental conditions. The theory does not predict these pressures in a quantitative way. The good

agreement between theoretical and experimental bending stresses and deflections shows that it is not necessary to

quantitatively predict the large pressures.’’

Even within the Wagner approach the problem under consideration is coupled and nonlinear. The hydrodynamic

loads on the structure and the structure deflections have to be determined at the same time, together with the extent of

the wetted part of the body. Evolution of the wetted body area in time is an important characteristic of the impact,

which strongly affects the magnitude of the loads.

The problem of elastic beam impact has been intensively studied in connection with wetdeck slamming of a

catamaran and entry of an elastic wedge into water. In both cases the elastic structure was modelled either as a

homogeneous Euler beam or as a combination of homogeneous beams connected to each other (Kvalsvold and

Faltinsen, 1995). The normal mode method was used to represent elastic deflection of the homogeneous structure

during the impact. The normal mode method allowed us to calculate the hydrodynamic loads in a simple way by

reducing the problem to computation of the added mass matrix elements, which are only dependent on the wetted area

of the body. Unfortunately, this is the case only for one homogeneous beam. If the beam is not homogeneous or the

structure consists of several homogeneous beams, then the loads are not as easy to compute and this part of the

calculation becomes very time consuming.

The finite element method is the main tool in structural analysis. In the present paper, we combine this method with

the Wagner approach to develop an efficient numerical algorithm for the analysis of the interaction between a complex

elastic structure and the liquid during impact. Only the distribution of the velocity potential along the wetted part of the

structure is required to compute the structure deflection and the bending stress distribution in the structure. This result
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is obvious within linear hydroelasticity; however, the problem under consideration is nonlinear because we do not know

in advance the extent of the wetted part of the structure. The decoupling of hydrodynamic and structural analysis

utilized in this paper is similar to that used in the normal mode method [see Korobkin (1998), where this decoupling was

used for the first time]. Kvalsvold and Faltinsen (1995) used another method of decoupling and clearly recorded the

difficulties induced by their decoupling. The technique utilized in the present paper can be viewed as a generalization of

the technique used in linear hydroelasticity. The generalization recognises that the wetted area is unknown in advance

and has to be determined together with the structural deflection. We do not evaluate the hydrodynamic pressures in the

present analysis and consequently the calculations of the velocity potential are reduced within the finite element method

to evaluation of the added mass matrix. The elements of the added mass matrix were analytically obtained and this

makes the calculations of the structural response fast and efficient. Position and dimension of the contact region

between the structure and the liquid are determined from the Wagner condition without additional assumptions. This

condition is complicated and nonlinear, but it is shown that the Wagner condition is equivalent to a system of two

ordinary differential equations for the coordinates of the contact points. Finally, the original coupled problem is

reduced to a nonlinear system of ordinary differential equations for the displacements of the beam elements and the

coordinates of the contact points. The system is integrated numerically by the fourth-order Runge–Kutta method. The

results obtained by using this method are in very good agreement with the exact results derived previously for the

problem of homogeneous plate impact onto a liquid free surface.

The advantages of the present method are outlined for the elastic wedge impact problem. However, the analysis is

valid for any blunt elastic structure entering water at moderate velocity.
2. Mathematical model

The plane unsteady problem of an elastic wedge penetrating an ideal and incompressible liquid is considered. Surface

tension effects are ignored. Initially ðt0 ¼ 0Þ the wedge touches the horizontal free surface of the liquid at a single point

and starts to move down thereafter with a constant velocity V . The initial contact point is taken as the origin of the

Cartesian coordinate system x0Oy0 (dimensional variables are denoted by a prime). The line y0 ¼ 0 corresponds to the

liquid free surface at t0 ¼ 0. The side walls of the wedge are modelled by simply supported Euler beams. The beams are

of equal length but of variable thickness. Owing to the different elastic properties of the left and the right wedge walls,

the flow caused by the wedge impact is asymmetric with respect to the line x0 ¼ 0. The initial position of the wedge

side walls is described by the equation y0 ¼ jx0j tan g, jx0joL cos g, where g is the deadrise angle of the equivalent rigid
wedge and L is the length of the side walls. The normal deflection of the beam is denoted by w0ðs0; t0Þ, where s0 is the

coordinate along the initially undeformed side walls, �Los0oL, s0 ¼ 0 corresponds to the wedge tip and s0 ¼ L to the

end-point of the right-hand side beam and s0 ¼ �L to the end-point of the left-hand side beam. The beams are

deforming owing to their interaction with the liquid. The position of the deformed plating of the wedge is given in the

parametric form

x0 ¼ s0 cos g� w0ðs0; t0Þ sgnðs0Þ sin g, (1)

y0 ¼ js0j sin gþ w0ðs0; t0Þ cos g� Vt0 ð�Los0oLÞ. (2)

In this analysis we consider only the case of small deadrise angles g. We shall determine the liquid flow, the pressure

distribution in the liquid region, deflection of the wedge, the stress distribution in the wedge platings and the dimension

of the wetted part of the entering wedge under the assumption g51.

Nondimensional variables are used below. The beam length L is taken as the length scale and the impact velocity V as

the velocity scale of liquid particles. Assuming that the wedge is rigid and the free surface is undeformed during the

penetration, we see that the wedge is totally wetted at instant T ¼ ðL=V Þ sin g and the vertical displacement of the

wedge is equal to L sin g at this time instant. The quantity T is taken as the time scale and the product L sin g as

the displacement scale, the product VL as the scale of the velocity potential and the quantity rV2= sin g as the

hydrodynamic pressure scale, where r is the liquid density. Wagner theory can be applied to the entry problem of a

wedge with small deadrise angle g; see Korobkin (2000). We introduce the small parameter � ¼ sin g and consider the

coupled problem of elastic wedge interaction with liquid in the case �51.

The plane, potential and nonlinear flow generated by the elastic wedge penetration is described in the nondimensional

variables by the velocity potential jðx; y; tÞ which satisfies the following equations:

jxx þ jyy ¼ 0; p ¼ �jt �
1

2
�ðrjÞ2 � �2

gL

V2
Zðx; tÞ ðin OðtÞÞ, (3)
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p ¼ 0; Zt þ �Zxjx ¼ jy ðon qOF ðtÞÞ, (4)

jy ¼ �1þ wt þ �
1þ cos gws

cos g� �2ws

jx þ �
2wt
ð1� cos gÞ=sin2 gþ ws

cos g� �2ws

ðon qOSðtÞÞ, (5)

j! 0 ðx2 þ y2 !1Þ, (6)

where g is the gravity acceleration, OðtÞ is the flow domain which varies with time (see Fig. 1), qOF ðtÞ is the free surface

of the flow boundary, qOF ðtÞ ¼ fx; yjy ¼ �Zðx; tÞ; xo� bðtÞ and x4aðtÞg, and qOSðtÞ is the part of the flow boundary,

which is in contact with the entering wedge surface. We write qOSðtÞ ¼ fx; yjy ¼ �ybðx; tÞ;�bðtÞoxoaðtÞg, where the

function ybðx; tÞ is defined in parametrical form by Eqs. (1) and (2) rewritten in nondimensional variables. It should be

noted that the definition of the free surface given above does not account for the flow features close to the intersection

points, where jetting occurs and the free surface cannot be projected one-to-one onto the horizontal line. The functions

bðtÞ and aðtÞ are unknown in advance and have to be determined together with the liquid flow and the wedge wall

deflections.

With nondimensional variables, Eqs. (1) and (2) take the form

x ¼ s� �2½sð1� cos gÞ=sin2 gþ wðs; tÞ sgnðsÞ�, (7)

y ¼ �½jsj þ wðs; tÞ � t� � �2wðs; tÞð1� cos gÞ=sin2 g. (8)

The s-coordinates of the contact points along the deformed platings of the wedge, saðtÞ and sbðtÞ, are defined by the

xðsaðtÞ; t; �Þ ¼ aðtÞ and xðsbðtÞ; t; �Þ ¼ �bðtÞ, respectively.

The beam deflection wðs; tÞ, where �1oso1 and tX0, is governed by the equations

mðsÞ
q2w

qt2
þ

q2

qs2
EIðsÞ

q2w

qs2

� �
¼ qðs; tÞ, ð9Þ

w ¼ wss ¼ 0 ðs ¼ �1; s ¼ 0; s ¼ 1Þ, ð10Þ

w ¼ wt ¼ 0 ðt ¼ 0Þ, ð11Þ

where mðsÞ ¼ m0ðsLÞ=ðrLÞ is the nondimensional mass distribution, E is Young’s modulus of elasticity, EIðsÞ ¼

EI 0ðsLÞ sin2 g=ðrV2L3Þ is the nondimensional rigidity of the beam, and I 0ðs0Þ is the moment of inertia of the beam cross-

section. The hydrodynamic load qðs; tÞ is given as qðs; tÞ ¼ pðxðs; t; �Þ; yðs; t; �Þ; tÞ, where sbðtÞososaðtÞ, and qðs; tÞ ¼ 0,

with saðtÞoso1 and �1ososbðtÞ.

The boundary-value problem (3)–(11) is considered under the additional condition that the components qOF ðtÞ and

qOSðtÞ of the liquid boundary match each other at the intersection points, which provides two equations with respect to
γ

w(x,t)

V

y

x

a(t)

x

x

φ=0 φ=0 φ  
φ  = Ν 

∆φ=0  

y

y ij

= 0 φ  y= 0

Fig. 1. Basic configuration and definitions.
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the functions aðtÞ and bðtÞ:

ZðaðtÞ; tÞ ¼ ybðaðtÞ; tÞ; Zð�bðtÞ; tÞ ¼ ybð�bðtÞ; tÞ. (12)

We restrict ourselves to the first-order asymptotics of the solution as �! 0. For this case condition (12) was derived

by Wagner (1932) and is herein referred to as the Wagner condition. Correspondingly, the boundary-value problem

(3)–(12), where � ¼ 0, is referred to as the Wagner problem for an elastic wedge. More details about the limit �! 0 and

the Wagner theory for rigid body impact can be found in papers by Howison et al. (1991) and Cointe (1991). Oliver

(2002) justified conditions (12). Fraenkel and McLeod (1997) provided rigorous mathematical analysis of the limit

�! 0 in the problem of rigid wedge entry with small deadrise angle g.
It is important to notice that within the Wagner formulation the coordinate s along the surface of the structure and

the horizontal coordinate x are equal to each other with accuracy of Oð�2Þ as �! 0, the nonlinear term in the Bernoulli

equation (3) can be neglected with accuracy of Oð�Þ, and the gravity effects can be neglected with the accuracy of Oð�2Þ
once the ratio gL=V2 is of the order of Oð1Þ in the Bernoulli equation (3). Moreover, the body boundary condition can

be highly simplified with accuracy of Oð�Þ and the kinematic boundary condition (4) can be linearized with accuracy of

Oð�Þ and imposed on the initial position of the free surface with the same accuracy. To leading order, the Wagner

conditions (12) provide

aðtÞ þ w½aðtÞ; t� � t ¼ Z½aðtÞ; t�, ð13Þ

bðtÞ þ w½�bðtÞ; t� � t ¼ Z½�bðtÞ; t�. ð14Þ

The small influence of gravity effects in water impact problems was discussed by Cointe (1991) and Howison et al.

(1991).

Within the Wagner approach adopted here, two-dimensional and potential flow caused by beam impact is described

in nondimensional variables by the velocity potential jðx; y; tÞ which satisfies the following equations:

jxx þ jyy ¼ 0; p ¼ �jt ðyo0Þ, ð15Þ

p ¼ 0; Zt ¼ jy ð16Þ

ðy ¼ 0; x4aðtÞ and xo� bðtÞÞ,

jy ¼ �1þ wt ðy ¼ 0; �bðtÞoxoaðtÞÞ, ð17Þ

j! 0 ðx2 þ y2 !1Þ. ð18Þ

The point (�bðtÞ; 0) corresponds to the left edge of the contact region between the entering body and the liquid,

and the point (aðtÞ; 0) corresponds to the right edge of this region. The functions aðtÞ and bðtÞ are unknown

in advance and have to be determined in the solution with the help of Eqs. (13) and (14). In the symmetric case,

bðtÞ ¼ aðtÞ.

The beam deflection wðx; tÞ, where �1oxo1 and tX0, is governed by the equations

mðxÞ
q2w

qt2
þ

q2

qx2
EIðxÞ

q2w

qx2

� �
¼ pðx; 0; tÞ, ð19Þ

w ¼ wxx ¼ 0 ðx ¼ �1;x ¼ 0; x ¼ 1Þ, ð20Þ

w ¼ wt ¼ 0 ðt ¼ 0Þ, ð21Þ

where pðx; y; tÞ is the hydrodynamic pressure given by the linearized Bernoulli’s equation. End conditions (20) represent

the simply supported beam and can easily be replaced with more realistic conditions.

The formulated coupled problem (13)–(21) is nonlinear due to Eqs. (13) and (14) with respect to the coordinates of

the contact points.
3. Finite element method and coupling

Within the finite element method the beam is divided into N elements and the beam deflection is represented inside

each element with the help of four polynomials of the third order NijðxÞ:

wðx; tÞ ¼
XN

j¼1

X4
i¼1

ajiðtÞNijðxÞ, (22)
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where x is the local coordinate within the element j, �1oxo1, x ¼ xj þ ‘ðxþ 1Þ=2, ‘ is the element length,

x1 corresponds to the left edge of the beam and xN þ ‘ to the right edge, xjþ1 ¼ xj þ ‘. The unknown coefficients ajiðtÞ

are referred to as principal coordinates of the beam deflection.

The variational form of the Euler beam equation and representation (22) provide a system of 4N differential

equations with respect to the principal coordinates:

M€aþ Ka ¼ fðtÞ,

aðtÞ ¼ ða11; a12; a13; a14; a21; a22; . . . Þ
T,

fðtÞ ¼ ðf 11; f 12; f 13; f 14; f 21; f 22; . . . Þ
T, ð23Þ

f jiðtÞ ¼

Z xjþ1

xj

pðx; 0; tÞNijðxÞdx. ð24Þ

Note that p ¼ 0 outside the contact region, therefore f jiðtÞ � 0 if jth element is not wetted. After some manipulations we

obtain

f jiðtÞ ¼ �
d

dt

‘

2

Z 1

�1

j xj þ
‘

2
ðxþ 1Þ; 0; t

� �
NijðxÞdx

� �
. (25)

The coupling procedure is similar to that applied by Malenica (1998), except that the hydrodynamic coefficients are

different. Condition (17) and representation (22) allow us to decompose the potential in the contact region as

jðx; 0; tÞ ¼ j0ðx; a; bÞ þ
XN

j¼1

X4
i¼1

_ajiðtÞjijðx; a; bÞ, (26)

where jijðx; a; bÞ ¼ fijðx; 0; a; bÞ with fijðx; y; a; bÞ being the solution of the following boundary-value problem

Dfij ¼ 0 ðyo0Þ, ð27Þ

fij ¼ 0 ðy ¼ 0 x4a or xo� bÞ, ð28Þ

qfij

qy
¼ Nij ½2ðx� xjÞ=‘ � 1� ðy ¼ 0; x 2 ðxj ; xjþ1Þ \ ð�b; aÞÞ, ð29Þ

qfij

qy
¼ 0 ðy ¼ 0; x 2 ð�b; aÞnðxj ; xjþ1ÞÞ ð30Þ

and j0ðx; a; bÞ ¼ f0ðx; 0; a; bÞ with the function f0ðx; y; a; bÞ being the solution of Eqs. (15)–(18) for the rigid wedge case

(i.e. wðx; tÞ � 0).

Substituting (26) into (25) and combining the result with (23), we end up with the matrix equation

d

dt
½ðMþ SÞ_aþ f0� þ Ka ¼ 0, (31)

where f0 ¼ f0ða; bÞ is the vector-function with components

½f0�ji ¼
‘

2

Z 1

�1

j0 xj þ
‘

2
ðxþ 1Þ; a; b

� �
NijðxÞdx (32)

and S is the matrix of added masses, S ¼ Sða; bÞ, with elements

½S�nm
ji ¼

‘

2

Z 1

�1

jmn xj þ
‘

2
ðxþ 1Þ; a; b

� �
NijðxÞdx. (33)

It is convenient to introduce a new unknown vector d ¼ ðMþ SÞ_aþ f0, with the help of which the original coupled

problem is reduced to the system of ordinary differential equations [see Korobkin (1998) for more details]

_d ¼ �Ka, ð34Þ

_a ¼ ðMþ Sða; bÞÞ�1½d� f0ða; bÞ�. ð35Þ

The initial conditions are að0Þ ¼ 0; dð0Þ ¼ 0.

It is important to note that the Wagner conditions (13) and (14) should also be reformulated according to the finite

element representation (22), in order to properly close the problem. The details are given in Section 5.
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4. Hydrodynamic coefficients

The main difficulty of the present analysis is the evaluation of the added mass matrix S, excitation vector f0 and the

functions aðtÞ; bðtÞ. Here we concentrate on the evaluation of the added mass matrix.

Eq. (33) provides

½S�nm
ji ¼

Z xjþ1

xj

jmnðx; a; bÞNij
2

‘
½x� xj � � 1

� �
dx, (36)

where 1pn; jpN, m; i ¼ 1; 2; 3; 4. It should be noted once again that in (36) only the numbers j and n, for which both

intervals ½xj ; xjþ1� and ½xn; xnþ1� have non-empty intersections with the contact region ½�b; a�, are considered. For all

other numbers j and n the integral in (36) is equal to zero.

It is convenient to introduce the new function

N̂ijðxÞ ¼
0; x4xjþ1; xoxj ;

Nij ½2½x� xj �=‘ � 1�; xjoxoxjþ1;

(

with the help of which integral (36) takes the form

½S�nm
ji ða; bÞ ¼

Z a

�b

jmnðx; a; bÞN̂ijðxÞdx. (37)

Denoting ~NijðxÞ ¼
R x

�b
N̂ijðx0Þdx0, one can rewrite (37) as

½S�nm
ji ða; bÞ ¼ �

Z a

�b

~NijðxÞ
qfmn

qx
ðx; 0; a; bÞdx.

After introducing the new variable l, so that x ¼ xðlÞ ¼ 1
2
ðaþ bÞlþ 1

2
ða� bÞ, we obtain

½S�nm
ji ða; bÞ ¼ �

aþ b

2

Z 1

�1

~Nij ½xðlÞ�
qfmn

qx

aþ b

2
lþ

a� b

2
; 0; a; b

� �
dl. (38)

The solution of problem (27)–(30) gives

qfmn

qx

aþ b

2
lþ

a� b

2
; 0

� �
¼

1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p � P � v �

Z 1

�1

N̂mn½xðtÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

dt
t� l

. (39)

Substituting (39) into (38) and rearranging the result, it can be shown that all the elements of the added mass matrix can

be analytically evaluated which makes the procedure very efficient. The same is true for the force vector ½f0�ji.
5. Dimensions of the contact region

In order to derive equations which govern motion of the contact points, we introduce the displacement potential

cðx; y; tÞ by equation

cðx; y; tÞ ¼
Z t

0

jðx; y; tÞdt. (40)

The boundary-value problem for the new unknown function is obtained by integrating equations (15)–(18) with respect

to time and taking into account initial conditions and the Wagner conditions (13) and (14). Then we obtain

cxx þ cyy ¼ 0 ðyo0Þ, ð41Þ

c ¼ 0 ðxo� b;x4a; y ¼ 0Þ, ð42Þ

cy ¼ f ðxÞ � tþ wðx; tÞ ð�boxoaÞ, ð43Þ

c! 0 ðx2 þ y2 !1Þ. ð44Þ

Note that Eqs. (41)–(44) are similar to Eqs. (15)–(18), which are for the velocity potential. The main difference between

these two systems of equations is due to the condition in the contact region. Now this condition is dependent on the

shape of the entering body, see Eq. (43). The function f ðxÞ gives the distance between the initial position of the free

surface and initial position of the entering body in vertical direction. Note that it does not matter which surface is

curved. Only the initial distance between the impacting surfaces matters.
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It is important to notice that the vertical derivative of the displacement potential provides the vertical displacement of

liquid particles. Therefore, this derivative has to be bounded, in particular, at the contact points, x ¼ aðtÞ and

x ¼ �bðtÞ. The latter requirement provides two equations with respect to the unknown functions aðtÞ and bðtÞ:

lim
x!�1

Z 1

�1

GðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

dt
t� x

¼ 0, ð45Þ

GðtÞ ¼ t� w½xðtÞ; t� � f ½xðtÞ�, ð46Þ

xðtÞ ¼ Atþ B; A ¼
aþ b

2
; B ¼

a� b

2
. ð47Þ

The quantity AðtÞ is the radius of the contact region and BðtÞ is a characteristic of the region asymmetry. In the

symmetric case, B ¼ 0.

There are two equations in (45), which can be written asZ 1

�1

Gðt;A;B; tÞ
dtffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p ¼ 0; ð48Þ

Z 1

�1

tGðt;A;B; tÞ
dtffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p ¼ 0: ð49Þ

It is convenient to take A as the new time-like variable and consider t ¼ tðAÞ and B ¼ BðAÞ as unknown functions of

this variable. It is possible to reduce Eqs. (48) and (49) to ordinary differential equations with respect to the new

unknown functions. These differential equations have to be added to system (34) and (35) and solved simultaneously.

We differentiate Eqs. (48) and (49) with respect to A and resolve the results with respect to derivatives dt=dA and

dB=dA. It is enough to perform the differentiation only for Eq. (48). Eq. (49) gives a similar result after introducing

factor t in the integrand. We obtain

qG

qA
ðt;A;BðAÞ; tðAÞÞ ¼

dt

dA
�

qw

qx
tþ

dB

dA

� �
�

df

dx
tþ

dB

dA

� �
�
qw

qt

dt

dA
, (50)

which makes it possible to rewrite (48) after its differentiation in the form

a11
dt

dA
� a12

dB

dA
¼ f 1, ð51Þ

a11ðA;B; dÞ ¼

Z 1

�1

1� _w½xðt;A;BÞ; t�ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p dt, ð52Þ

a12ðA;B; aÞ ¼

Z 1

�1

wx½xðtÞ; t� þ f 0½xðtÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p dt, ð53Þ

f 1ðA;B; aÞ ¼

Z 1

�1

wx½xðtÞ; t� þ f 0½xðtÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p tdt. ð54Þ

Correspondingly, Eq. (49) gives

a21
dt

dA
� a22

dB

dA
¼ f 2. (55)

The coefficients a21, a22 and f 2 are obtained following the same procedure. Substituting expansion (22) into (52), we find

a11ðA;B; dÞ ¼ p� _aað11Þ, (56)

where _a is given by (35), the right-hand side of which is dependent on A, B and d. Proceeding in a similar way, we obtain

a21ðA;B; dÞ ¼ �_aa
ð21Þ, (57)

the elements of the vectors að11Þ and að21Þ are dependent only on A and B and are calculated analytically.

Integrals (53) and (54) are evaluated in a similar way. Once the coefficients in equations (51) and (55) have been

calculated, these equations can be presented as

dt

dA
¼ Q1ðA;B; a; dÞ;

dB

dA
¼ Q2ðA;B; a; dÞ. (58)
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Finally multiplying equations (34) and (35) by dt=dA, we obtain

dd

dA
¼ �Ka �Q1, ð59Þ

da

dA
¼ ðMþ Sða; bÞÞ�1½d� f0ða; bÞ�Q1. ð60Þ

The system of ordinary differential equations (58)–(60) is solved numerically with the initial conditions t ¼ 0, B ¼ 0,

a ¼ 0, d ¼ 0 at A ¼ 0.
6. Results and discussion

6.1. Added masses of elastic plate

As mentioned in the Introduction, the coupled problem (13)–(21) can be solved by the normal mode method in the

case of a homogeneous beam. We consider the symmetric case, where the plate corresponds to the interval �1oxo1 in

nondimensional variables and both the plate deflection wðx; tÞ and the velocity potential are even with respect to the

coordinate x. The plate is simply supported at its ends. In this case the beam deflection is sought in the form

wðx; tÞ ¼
X1
n¼1

anðtÞcnðxÞ, (61)
Table 1

Added mass coefficient S11 for N ¼ 10

a Snum Sana Relative error

0.1 0.0156110 0.0156113 2.2405E�05

0.2 0.0612987 0.0613005 2.8747E�05

0.3 0.1337342 0.1337377 2.6077E�05

0.4 0.2277072 0.2277134 2.7555E�05

0.5 0.3366057 0.3366147 2.6615E�05

0.6 0.4530144 0.4530267 2.7222E�05

0.7 0.5693887 0.5694039 2.6820E�05

0.8 0.6787272 0.6787456 2.7074E�05

0.9 0.7751922 0.7752130 2.6927E�05

1.0 0.8546074 0.8546305 2.7000E�05

Table 2

Added mass coefficient S11 for N ¼ 20

a Snum Sana Relative error

0.1 0.0156113 0.0156113 1.8038E�06

0.2 0.0613004 0.0613005 1.7318E�06

0.3 0.1337375 0.1337377 1.7109E�06

0.4 0.2277130 0.2277134 1.7002E�06

0.5 0.3366141 0.3366147 1.6936E�06

0.6 0.4530259 0.4530267 1.6895E�06

0.7 0.5694030 0.5694039 1.6875E�06

0.8 0.6787445 0.6787456 1.6874E�06

0.9 0.7752117 0.7752130 1.6885E�06

1.0 0.8546290 0.8546305 1.6904E�06
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where cnðxÞ ¼ cosðlnxÞ and ln ¼ ðn� 1=2Þp. Within the normal mode method the added mass matrix Smn is defined as

SmnðaÞ ¼

Z a

�a

fnðx; 0; aÞcmðxÞdx, (62)

where 2a is the dimension of the wetted part of the beam and fn satisfies the boundary value problem similar to

(27)–(30), the difference being in the boundary condition (29) for the wetted part which becomes:

qfn

qy
¼ cnðxÞ ðyo0; jxjoaðtÞÞ. (63)

After some algebra (see Korobkin, 1998), we obtain for SmnðaÞ

SmnðaÞ ¼
pa

l2n � l2m
½lnJ0ðlmaÞJ1ðlnaÞ � lmJ0ðlnaÞJ1ðlmaÞ� ðnamÞ, ð64Þ

SnnðaÞ ¼
p
2

a2½J2
0ðlnaÞ þ J2

1ðlnaÞ�. ð65Þ

The elements of the matrix S can be also computed with the help of the finite element method. Defining the coefficients

f n
ij so that

cnðxÞ ¼ cosðlnxÞ �
XN

j¼1

X4
i¼1

f n
ijNijðxÞ (66)
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Fig. 2. Plate deflection.
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Fig. 3. Second derivative obtained by modal and FEM approach.
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one can find

Sa;b �
XN

n¼1

X4
m¼1

f a
nm

XN

j¼1

X4
i¼1

f b
nm½S�

nm
ji , (67)

where ½S�nm
ji were defined in Section 4.

In Tables 1 and 2 we show the comparison between the analytical results (65) for S11 and those obtained using the

finite element representation (67) for two numbers of finite elements, N ¼ 10 and N ¼ 20. We can observe very good

convergence characteristics of the finite element method.
6.2. Numerical slamming simulation

In Figs. 2 and 3 we show the results for the nondimensional deflection, and its second derivative, of the wedge right

plating during impact, obtained by the present method and the normal mode method [see Korobkin (2000)]. The plate is

simply supported at its edges, the half-length L equals 0.5m, the beam thickness is 1 cm, its density 7850 kg=m3,

deadrise angle g is 10� degrees, and the impact velocity equals 4m/s. The time corresponds to the instant where the plate

is half wetted. We can see very good agreement between the two methods.

It should be noted that the normal mode method is not well suited to numerical analysis of elastic wedge impact.

This is due to the fact that the wedge consists of two independent beams, which interact only if both beams are in

contact with water. The problem is tackled by the normal mode method in Korobkin (2000) only in the symmetric case,

when the beams behave identically. We do not know at present how to solve the asymmetric problem of elastic wedge

impact by the normal mode method. However, even in the symmetric case, the application of the normal mode method

to the elastic wedge impact problem is non-trivial and requires many modes to achieve convergence of the numerical

solution. If for one homogeneous beam the normal mode method requires about 10 modes to provide accurate results

[see Korobkin (1998)], the elastic wedge case requires more than 100 modes to provide a reasonable result. The lines

in Figs. 2 and 3 are obtained with 150 modes. The corresponding CPU time of the normal mode method is too large;

this is why this method cannot be recommended for practical problems of complicated structural impact on the water

surface.
7. Conclusion

A method for the calculation of hydroelastic impact has been developed on the basis of Wagner theory for

fluid flow and a finite element representation of the structure. All intermediate steps of the analysis are carefully

checked and the method is validated by comparisons with the modal method using a beam model for the

structure.

Further developments concern the coupling of the method with more realistic models for the impacting structure by

using general finite element codes. Two strategies are possible: direct coupling and modal approach.

In the direct coupling approach, we follow the method described in the present paper, except that the interaction is

restricted to the wetted part of the finite element model. The disadvantage of the method may be the relatively big

system of dynamic equations (for each node of the whole structural model) which have to be integrated in time. The

system is no longer diagonally dominant due to the added mass associated with the wetted nodes. Also, the transfer of

information between the two models may not be straightforward.

In the modal approach, the structural modes (dry) are first calculated, and the modal characteristics (mass,

stiffness and displacements of the interface) are transferred to the hydrodynamic solver which calculates the

associated hydrodynamic coefficients using the finite element generic solutions explained in Section 6.1. The

dynamic equations for the principal coordinates of the modes are than integrated in time and modal amplitude time

histories are retransferred to the FEM code in order to generate the time history of the displacements and strains

in the whole structure. The advantage of this method is that the coupling procedure is quite clear and the system

of equations to integrate in time is of lower order (equal to the number of retained modes). The weakness may lie in the

representation of very high impact loads where the number of necessary modes increases, especially in the first few time

instants. In this respect, the choice of the method will depend on the nature of the impact and on the type of

information required.
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